If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-135t^2-20t+155=0
a = -135; b = -20; c = +155;
Δ = b2-4ac
Δ = -202-4·(-135)·155
Δ = 84100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{84100}=290$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-290}{2*-135}=\frac{-270}{-270} =1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+290}{2*-135}=\frac{310}{-270} =-1+4/27 $
| y2−9=y^2+3y−18 | | n^2-25=200 | | (D2+3D)y=0 | | 24=a*8 | | 1/2x+10/3=-16/6 | | 437=p+417 | | -2k^3=-250 | | 3x-40=120 | | 3z²=7z+1 | | 6x-14=4x+ | | (x=11)11 | | 60=–6(x–5) | | 10/2.4=25/m | | (6x4)=(3x8) | | 4*3=2+c+c | | 47000x299,792,458=2 | | -3x+10=5x+106 | | F(x)=-3x+5x^-6 | | 3y(200)=3000 | | 2x-10=-45+7x | | −2x−6=24 | | 4y+6=88 | | 21p=(-798) | | -4x-4=3x+3 | | -5x+6=x+6 | | 2x+5(3x-3)=19 | | 6x+52=98 | | (-769)=d-849 | | 0.25a=0.666666667 | | 5x-5=15x+115 | | 11+4÷7p=5 | | x-8=-4-3x |